Микромостиковые болометрические матрицы как пример распределенного сенсора

> Ю.С. Четверов³, В.А. Бородин², С.Ю. Шаповал¹ ¹ ИПТМ РАН, Черноголовка ² ФГУП ЭЗАН, Черноголовка ³ ОАО «НИИ «Циклон», Москва

Вопрос

Можно ли сформировать матрицу сенсоров непосредственно на кристалле считывающей схемы, используя групповую технологию, и при этом не повредить и не изменить параметры схемы?

Пластины с кристаллами мультиплексоров изготавливались на заводе «Ангстрем»

И в будущем перейти к технологии «чувствительной кожи»

Неохлаждаемый болометр

1 = 8 - 12 mm

Чувствительный элемент микроболометрической матрицы

Нанесение слоя полиимида

ЭЦР-плазменное травление контактных окон под заданным углом и снятие фоторезиста

ЭЦР-плазменное наращивание нитрида кремния

Формирование контактов на основе нихрома и основания микромостика

Формирование термочувствительного элемента (VO_x)

Технологическая схема Эцр-плазменное

наращивание защитного слоя (Si₃N₄)

ЭЦР-плазменное травление "жертвенного" полиимидного слоя

Неохлаждаемый болометр

400 m

1 100

Форматы 320×240 и 160 × 120 Размеры пикселей 20 × 20 мкм² и 48 × 48 мкм²

700 m

Задержка – единицы мсек.

Применение плазмы в нанотехнологии

СВЧ плазма в условиях электронного циклотронного резонанса

Геликонный резонанс

Индуктивно связанная ВЧ

плазма

0.18 мкм

ЭЦР-плазма СВЧ магниты N_e = 10¹³ см⁻³ $N_{o} = 10^{12} \text{ cm}^{-3}$ Е = 10–25 эВ Самосмещени е 10-500B подложка

1 ³ **D**

Условия формирования ЭЦРразряда

t = eB / mC

wt >> 1 (l^{3} D)

N_{cr} = m²w² / 4pe² = 7.4 10¹⁰ cm⁻³ Для плоского фронта плазма

СВЧ

Экспериментально достигается $N_e = (2-4) \ 10^{13} \text{ cm}^{-3}$

Сверхплотная плазма N >> N_{cr}

Трансформация энергии за счет формирования плазменных волн

Требования к технологическим процессам:

- наличие дельта-легированных слоев с моноатомными переходными слоями в эпитаксиальных структурах,
- размер элементов порядка 1 нм с боковым уходом менее 0.1 нм, гетерогенные реакции, длина пробега активных частиц порядка 10 см,
- отсутствие радиационных повреждений от различных технологических операций,
- предохранение образцов от проникновения атомарных газов,
- пассивация поверхности активных областей с контролируемым зарядом поверхности.

Ряд негативных эффектов, присущих и ЭЦР-плазменным методам:

• глубина распространения радиационных дефектов достигает 50 нм,

• в объеме реактора и на поверхности образца формируются моноатомные газы, их диффузия в объем образца может изменять его электронную структуру при взаимодействии моноатомных газов с электрически активными центрами,

• возможно частичное проникновение СВЧ излучения в область подложкодержателя, приводящее к его разогреву.

ЭЦР плазма применяется более

Осаждение из газовой фазы: -Полупроводники -Диэлектрики -Металлы -Сверхпроводники -Алмаз Эпитаксия -CBE -MBE -MOVPE

Прецизионное травление

Распыление

Обработки: -имплантация -разделение изотопов -Пассивация электрически активных центров

Двигатели коррекции орбиты в космосе

Конструкции ЭЦР-плазменных источников

ЭЦР-плазменное оборудование

ИПТМ РАН NRL, USA IBM, USA MIT, USA Lund Univ., Sweden Chalmers Univ., Sweden HSRI, China ChREI, China

Новая ЭЦР-плазменная установка

- n Низкотемпературное осаждение
- n Прецизионное травление
- n Рост эпитаксиальных структур III-N
- n Диаметр подложек 150 мм
- n Электростатический прижим
- n Охлаждение через гелиевую подушку
- n Компьютерное управление

Общий вид установки ЭЦР-плазменного прецизионного травления

Лабораторная установка эпитаксии широкозонных полупроводников (ECR-MOVPE)

При необходимости установка может комплектоваться ВЧплазменными источниками (индуктивными, емкостными, Геликонными)

Новая ЭЦР-плазменная установка

Ранее подобные установки конструировались нами для ведущих зарубежных лабораторий (Военно-морская лаборатория США, Лундский университет (Швеция), Хебейский институт полупроводников (Китай) и др.). Теперь впервые удалось совместно с ЭЗАН создать очень близкий к производственному варианту полностью автоматизированный технологический комплекс, использующий ЭЦР-плазменный разряд.

Использовались три моды ЭЦРплазмы:

 однородная – плотность ионного тока постоянная на 80% сечения источника, магнитное поле около окна 1000-1100 Гс, в устье источника – 875 Гс,

• стержневая – максимальная плотность ионного тока (плотность плазмы) на оси источника, магнитное поле около окна 870-930 Гс,

• кольцевая – уменьшение ионного тока около оси источника, магнитное поле около окна 930-1000 Гс.

Зависимость давления в реакторе от поглощенной СВЧ мощности.

Схема измерения усредненной по диаметру потока плотности плазмы

Эмиссионный спектр

EpiLab 0.4 mTorr, 300 W

Astex 0.2 mTorr, 100 W

Методика лазерной интерферометрии для измерения в реальном времени толщины и скорости роста (травления) слоя

Изображение на мониторе

Зависимость плотности плазмы от поглощенной СВЧ мощности для различных газов (40 см от устья источника).

Распределение плотности ионного тока и толщины слоя по диаметру

Управление углом травления

Изменение порогового напряжения Si КМОП транзисторов

Не обнаружено значимых
изменений порогового
напряжения на уровне
вплоть до 0.1 В

Изменение пробивного напряжения GaAs/AlGaAs транзисторов после ЭЦРплазменного наращивания Si₃N₄

Изменение выходной мощности и коэффициента полезного действия AIGaN/GaN транзисторов после ЭЦР-плазменного наращивания Si₃N₄

Управление содержанием водородных связей

ИК-спектры слоев Si₃N₄ осажденных с помощью ВЧ и ЭЦР плазменного разряда при различных температурах

•

Содержание водородных связей в слоях Si₃N₄ как функция соотношения расходов SiH₄/N₂

Рентгеновские линзы, высокоаспектное травление Si

Рентгеновские линзы, высокоаспектное травление Si

Изотропное травление Si

Глубокое травление Si без пассивации

Глубокое травление Si без пассивации

Травление с пассивацией («бош-процесс»)

Для глубокого ПХТ в серийном производстве необходимо наладить изготовление сменной оснастки и электростатических подложкодержателей с гелиевой подушкой охлаждения. В двух исполнениях: металлокерамический и металлопластовый.

Выводы

ЭЦР-плазма

Неохлаждаемый болометр

Фундаментальные исследования были поддержаны

Министерство промышленности,

Российской Федерации

PAH

Грант 01.20 00 00 763, "Физические и технологические основы эпитаксии, осаждения многослойных структур и наноструктурирования" Грант программы РАН "Физика и технология наноструктур"

Министерство промышленности, науки и технологий

Грант "Исследование физических основ и разработка технологии СВЧ мощных транзисторов на основе широкозонных материалов";

Грант "Исследования перколяционных и квантовых эффектов effects в квази-2D системах"

Фундаментальные исследования были поддержаны

Российское агенство систем управления

Контракт "Исследования и разработка основ технологии транзисторов с размерами элементов менее 0.1 mkm"

Science & Technology

Офис военно-морских исследований США Грант программы "Широкозонные полупроводники"

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

CNRS, Франция Грант "ЭЦР-плазменно стимулированная пассивация широкозонных транзисторов"

Спасибо за внимание